Search results

Search for "surface hydroxylation" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

Synthesis of highly active ETS-10-based titanosilicate for heterogeneously catalyzed transesterification of triglycerides

  • Muhammad A. Zaheer,
  • David Poppitz,
  • Khavar Feyzullayeva,
  • Marianne Wenzel,
  • Jörg Matysik,
  • Radomir Ljupkovic,
  • Aleksandra Zarubica,
  • Alexander A. Karavaev,
  • Andreas Pöppl,
  • Roger Gläser and
  • Muslim Dvoyashkin

Beilstein J. Nanotechnol. 2019, 10, 2039–2061, doi:10.3762/bjnano.10.200

Graphical Abstract
  • the tetracoordinated Si might occur [49]. The presence of an additional peak at −90 ppm (A1) and a relative area of 6% was assigned to Si (2Si, 1Ti, 1OH) resulting from the intense surface hydroxylation after treatment of the titanosilicate with H2O2. This hypothesis was confirmed by efficient cross
  • . This step led to a 2.6-fold increase of the intrinsic acid adsorption capacity of the treated catalyst (P-ETS-10/60) compared to the Na,K-ETS-10 as probed by NH3-TPD, presumably due to intense surface hydroxylation, and therefore, reduction in hydrophobicity. The latter has led to an even lower
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2019

Hydration of magnesia cubes: a helium ion microscopy study

  • Ruth Schwaiger,
  • Johannes Schneider,
  • Gilles R. Bourret and
  • Oliver Diwald

Beilstein J. Nanotechnol. 2016, 7, 302–309, doi:10.3762/bjnano.7.28

Graphical Abstract
  • ion microscopy; magnesia nanocubes; nanomaterials aging; oxide nanomaterials; surface hydroxylation; thin water films; volume expansion; Introduction Knowledge about the stability of engineered nanomaterials in aqueous systems is critical for predicting their functionality under environmental
PDF
Album
Supp Info
Full Research Paper
Published 29 Feb 2016

Spontaneous dissociation of Co2(CO)8 and autocatalytic growth of Co on SiO2: A combined experimental and theoretical investigation

  • Kaliappan Muthukumar,
  • Harald O. Jeschke,
  • Roser Valentí,
  • Evgeniya Begun,
  • Johannes Schwenk,
  • Fabrizio Porrati and
  • Michael Huth

Beilstein J. Nanotechnol. 2012, 3, 546–555, doi:10.3762/bjnano.3.63

Graphical Abstract
  • precursor Fe(CO)5 [31] is also at work here. Further, we have also performed DFT calculations for this deposition process considering various slab settings, and we find that the extent of surface hydroxylation and the orientation of the precursor plays a vital role in the dissociation and the formation of
PDF
Album
Full Research Paper
Published 25 Jul 2012
Other Beilstein-Institut Open Science Activities